skip to main content


Search for: All records

Creators/Authors contains: "Liu, Liyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We investigate fermionic Mott insulators in a geometrically frustrated triangular lattice, a paradigm model system for studying spin liquids and spontaneous time-reversal symmetry breaking. Our study demonstrates the preparation of triangular Mott insulators and reveals antiferromagnetic spin-spin correlations among all nearest neighbors. We employ a real-space triangular-geometry quantum gas microscope to measure density and spin observables. Comparing experimental results with calculations based on numerical linked cluster expansions and quantum Monte Carlo techniques, we demonstrate thermometry in the frustrated system. Our experimental platform introduces an alternative approach to frustrated lattices which paves the way for future investigations of exotic quantum magnetism which may lead to a direct detection of quantum spin liquids in Hubbard systems. 
    more » « less
    Free, publicly-accessible full text available December 13, 2024
  2. Zeeman slowers come in two commonly used types: electromagnet-based slowers and permanent-magnet slowers. Both have characteristic advantages and disadvantages. The electric currents required to create strong magnetic fields lead to heat dissipation that limits the achievable fields, while permanent-magnet slowers cause bias magnetic fields at the position of the magneto-optical trap. Here, we combine both approaches and their advantages at our lithium-6 triangular-lattice quantum gas microscope and extend the field of an electromagnet-based Zeeman slower using permanent magnets. We observe nearly doubled loading rates of the magneto-optical trap and no significant stray fields in the trapping region. Our approach allows for a stronger magnetic field in places where geometric constraints prevent the use of coils, and it provides a low-cost upgrade to the loading rate at established experiments.

     
    more » « less